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Quantum dot in the pseudogap Kondo state
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Abstract. We investigate the transport properties of a (small) quantum dot connected to Fermi liquid leads
with a power-law density of states (DOS). Such a system, if experimentally realizable, will have interesting
physical properties including: (i) non-saturating Coulomb blockade peak widths; (ii) a non-unitary Kondo
peak symmetrically placed between Coulomb blockade peaks; (iii) an absence of conductance away from
particle-hole symmetry at sufficiently low temperatures; and (iv) evidence of a quantum critical point
as a function of dot-lead hopping. These properties are compared and contrasted with one dimensional
Luttinger systems exhibiting a power-law “tunneling-DOS”.

PACS. 73.23.Hk Coulomb blockade; single-electron tunneling – 73.63.Kv Quantum dots – 73.63.-b
Electronic transport in nanoscale materials and structures – 72.15.Qm Scattering mechanisms and Kondo
effect

The realization [1] and verification [2] that single-impurity
Kondo physics is experimentally accessible in quantum
dot systems led to a renaissance of interest in this prob-
lem, inspiring works as diverse as investigations of non-
equilibrium effects [3] to the observation of many-body
resonances such as the quantum corral [4]. The role of
electron fractionalization has been important to descrip-
tions of the fractional quantum Hall effect and spin-charge
separation in one dimension (1D).We study the transport
properties of a (small) quantum dot connected to Fermi
Liquid (FL) leads with a normalized power-law density
of states (DOS) ρ(ε) = r+1

2D | ε
D |r, D being the bandwidth,

which allows us to probe exotic physics of the pseudogap
Kondo model [5] at the nanoscale. This may allow for the
first measurement of a Kondo state with a fractional phase
shift of its conduction electrons [6,7]. In contrast with the
constant DOS case, odd Coulomb valleys no longer fill
in, so Coulomb blockade peaks (Cbps) are well separated
from Kondo peaks due to an opacity to conductance in-
troduced by particle-hole symmetry (p-hs) breaking terms
which completely change the nature of the strong coupling
fixed point [7]. Preliminary results can be found in refer-
ence [8]. Can such a power-law DOS be realized? One is
naturally drawn towards materials with nodal quasiparti-
cles (qps) along their Fermi surfaces such as the d-wave
high temperature cuprate superconductors (d-sc) or heavy
fermion systems. The Kondo effect we describe will not
be measureable when r = 1 excluding immediately the
former which exhibit a linear DOS along the nodal direc-
tions. However, it is reasonable to expect realizations of
such ideas in the future.

a e-mail: karyn.le.hur@usherbrooke.ca

When tunneling through a single-barrier, one of the
main effects of interactions in 1D Luttinger systems is
to renormalize the tunneling-DOS (TDOS), which means
the DOS to add an electron at an energy ε [9]: ρ̄(ε) ∝
|ε|−1+1/g, g is the well-known Luttinger exponent and
g < 1 for repulsive interactions. A similar effect can be
obtained in the case of a mesoscopic conductor embedded
in an electrical circuit with an ohmic resistance R. Indeed,
by tunneling through a tunnel junction in the presence
of an ohmic environment, in the linear response régime
the theory predicts a conductance G(V ) ∝ |V |2R/RK ,
RK = h

e2 = 25.8 kΩ being the quantum of resistance and
V the bias voltage [10], which from Fermi’s golden rule
G(V ) ∝ ρ̄(V )2 might also be interpreted as a power-law
TDOS ρ̄(ε) ∝ |ε|R/RK . The mapping between these two
problems has been addressed in reference [11] and explic-
itly proven recently in reference [12]. Evidence for such a
small power-law TDOS has been shown in different ma-
terials including small-capacitance junctions [13], (multi-
wall) nanotubes [14], and NbSe3 quantum wires [15]; the
last two might find description in terms of a multi-mode
Luttinger theory without single-particle hopping between
modes [16]. By identifying ρ̄(ε) = ρ(ε), one may wonder
to what extent an analogy between the conductance of a
FL with a power-law DOS and that of a 1D system with
a power-law TDOS holds.

Here we focus on a quantum dot coupled to FL leads
possessing a power-law DOS and compare and contrast
with the situation of a quantum dot coupled to 1D leads.

Kane and Fisher [11] realized that, while a single im-
purity in a Luttinger liquid is localizing, a second barrier
restores the ability of the system to conduct as T → 0,
with G = gG0, where the Luttinger parameter g < 1 for
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repulsive interactions and G0 is the unitary conductance
2e2

h . Furusaki and Nagaosa [17] extended this 1D work to
extract the temperature dependence of the height of the
Cbps, found to grow as T

1
g −2 at low temperatures, and

the width of the peak, found to vanish as T
1
g −1 (T , for

long range interactions), with experimental support [18].
Recently, Nazarov and Glazman [19] revisited the reso-
nant tunneling problem in 1D to build a non-perturbative
theory of the conductance valid in a broad region of T .
The strong interaction limit (g = 1/2) has been treated to
similar effect [20]. We find the width of the Cbps is at low
T governed by the power of the DOS, vanishing as T r.
The height of the Cbps and Kondo peaks asymptote to
G = G0 cos2(πr

2 ) as T → 0. Kondo physics is predicted to
occur when r < 1

2 , the coupling J is sufficiently large, and
the number of dot electrons is odd, results different from
1D as detailed in Figure 3. The potential for a tunable
quantum critical point (qcp) and implications at asym-
metric points are presented.

We consider the small dot, weak tunneling limit in
which the dot is a collection of discrete levels of average
spacing δE, of similar size as the charging energy, Ec

(O( e2

2C )), of the dot (e: electron charge; C: total capaci-
tance of quantum dot). The energy to add/subtract an
electron from the dot is E±

c = Etot(VG,n + 1) – Etot(VG,
n) = (n + 1

2 - CGVG

e ) e2

C , where n is the initial (final)
number of electrons on the dot for +(−), Etot is the total
dot energy, and VG is an external gate voltage coupled
capacitively (CG) to the dot. For temperatures satisfying
δE < T < Ec, the physics of the dot is dominated by
Coulomb blockade, whereas for T < E∗, single-level
Coulomb blockade (E∗ ≡ min(δE, Ec)) occurs. Thus, for
T < E∗, we can describe an effective hopping across the
dot in terms of a single impurity Anderson model [1],
H =
∑

kασ

(
εkc†kασckασ + (tkαc†kασdσ + h.c.)

)
+ εdnd +Und↓nd↑,

(1)

where ckασ destroys a conduction electron of momentum
k, spin σ =↑, ↓, from lead α = L, R (L: left and R: right).
Moreover, εd denotes the energy of the highest occupied
level on the dot with occupancy nd = d†σdσ and U =
(E+

c +E−
c ) takes into account the Coulomb repulsion on

the dot. Keep in mind that here the conduction band is
embodied by a power law DOS ρ(ε) = r+1

2D | ε
D |r.

Resonant level limit: the resonant limit is reached
by tuning the gate voltage VG such that the energy to
add/subtract one electron obeys δE±

c = 0 [1]. In this
case the effective Coulomb interaction vanishes (U = 0)
and the physics is that of a single level of energy εd. To
derive an expression for the conductance of the quan-
tum dot system it is helpful to consider the current in-
cident on, IL, and transmitted from, IR, the dot. If we
first assume the dot is transparent then it is simple to
write IL = nLev = 2e

l

∑
k fL(εk)v = 2e

h

∫ ∞
−∞ dεfL(ε) and

I = IL−IR. Here we assume an infinitesimal voltage drop
from left to right across the dot and define nL(R) = NL(R)

l

and fL(R)(ε) as the density of particles and the Fermi func-
tion of the left(right) lead respectively; l the length of the
lead; and v = 1

�

∂ε
∂k the drift velocity of the particles. In

the first step we replaced
∫

ρ(ε)dε → ∑
k followed in the

second by the replacement
∑

k → l
2π

∫
dk. This derivation

is appropriate for FL leads (with electron-like quasiparti-
cles). For non-unitary transmittance an additional factor
occurs within the integral due to elastic scattering from
the double barrier [21] to yield,

I =
2e

h

∫ D

−D

dε
(fL(ε) − fR(ε)) 4ΓL(ε)ΓR(ε)

(ε − εd + Λ(ε))2 + (ΓL(ε) + ΓR(ε))2
. (2)

Here, we approximate tkα = tα, ΓL(ε) and ΓR(ε) are
the widths of the quasilocal level associated with es-
cape to respectively the left-hand and right-hand leads
and Λ(ε) = ΛL(ε) + ΛR(ε) with Λα(ε) the correspond-
ing real parts of the self-energies. These are defined
as Γα(ε) = πt2αρ(ε) [1] and Λα(ε) = −t2αρ(ε)sgn(ε)×
(( |ε|D )1−r 1

r−1 2F1(1, 1−r
2 ; 3−r

2 ; ( ε
D )2)+π tan(πr

2 )) [22]. Be-
low, we consider symmetric barriers where tα = t which
leads to ΓL(R)(ε) = Γ0| ε

D |r with Γ0 = π (r+1)
2D t2. The differ-

ence between Ec and D may be quite large, as Ec ≈ 1K,
whereas D is the bandwidth of the electron leads. Us-
ing equation (2) we can calculate the bare conductance
(GR = dI

dV |V →0 assuming µL(R) = ± eV
2 ) to arrive at,

GR =
2e2

h

γ2(r)
kBT

∫ D

−D

dε
|ε|2rf(ε)(1 − f(ε))

(ε − εd + Λ(ε))2 + γ2(r)|ε|2r
,

(3)
where γ2(r) = π2t4(r+1)2

D2(1+r) , f(ε): Fermi function at V = 0. It
is straightforward to take the T = 0 limit of this expression
at resonance (εd = 0) to find: GR = 2e2 cos2( πr

2 )

h for r < 1;
GR = 0 if r ≥ 1. The conductance through a quantum dot
can also be found [1] as G = G0 sin2(δ) where δ(ε) = π

2 (1−
rsgn(−ε)) is known (for r < 1) to be the phase shift of the
U = 0 Anderson model [6,7]. The fractional phase shift
can be interpreted as a decoupling of some fraction, r, of
spins of the conduction electrons at εF . The temperature
below which this saturation occurs is a decreasing function
of r as shown in Figure 1. Away from resonance (εd �=
0), at high temperatures the curves follow those of the
resonant case, and for r = 0 saturate to a non-zero value
determined by the distance away from the resonant point
with a Lorentzian lineshape of width Γ0. For r �= 0, the
high temperature curves again follow those at resonance
but exhibit a maximum which gradually crosses over at
very low temperatures to the power-law form T 2r, such
that one is left at T = 0 with δ function peaks as a function
of εd in place of the Lorentzian seen when r = 0.

We plot the resonant lineshapes as a function of δVG

as one decreases the temperature in Figure 2 for the case
r = 0.2. One observes a distinctly non-Lorentzian shape
to these curves at high temperatures where a double-
peak structure is evident-the wider peak exhibiting a
pseudogap-like behavior as VG → 0 to effectively shift the
conductance maximum away from 0 as seen in the inset.
As the temperature decreases, the central peak grows to
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Fig. 1. Resonant tunneling conductance GR vs. temperature
T for tunneling, t = 0.01D. At εd = 0 (solid) all curves rise

toward the unitary limit before saturating at 2e2

h
cos2(πr

2
). At

small εd = 10−4D (dashed), curves vanish as T 2r as T → 0.
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Fig. 2. Temperature evolution of the conductance near the
resonant point (εd = 0, δVG = 0) for r = 0.2, t = 0.01D. At
high temperatures unlike for r = 0, there is a clear minimum
(seen magnified in the inset) as a function of VG and the max-
imum of the conductance does not occur at resonance. Further
lowering the temperature, the conductance at εd = 0 grows as
in Figure 1, while the weight in the tails decreases.

eventually dwarf this outer structure. We stress that even
this central peak does not have a Lorentzian line-width
as can be seen by plotting the half-width vs. temperature
(not shown), which is seen for r = 0 to saturate to the
value Γ0 and to vanish approximately as T r at sufficiently
low temperatures (all curves have approximately linear
T -dependence at high temperatures). Here, we still note
some similarities with 1D systems with a TDOS [11,17];
this suggests that in the case of two symmetric barriers in
1D, for certain ranges of ε and T , the model may be also
rewritten in terms of decoupled elastic scattering ampli-
tudes ΓL(R)(ε) = πt2ρ̄(ε) with ρ̄(ε) ∝ |ε|−1+1/g being the
TDOS at each barrier, as emphasized in reference [19].

Kondo limit: we have seen that a power-law DOS en-
hances Coulomb blockade to such an extent that, at zero
temperature, Lorentzian lineshapes have been replaced by
delta-function peaks about the resonant points where the

energy to add or subtract an electron E
+(−)
c vanishes. In

regular quantum dots (r = 0), Coulomb valleys possess-
ing an odd number of electrons allow certain spin-flip pro-
cesses which at sufficiently low energies T < E∗, grow
to eventually allow unitary conductance. Can this same
physics be realized when the DOS of the conduction elec-
trons in the leads follows a power law? To address this
question we consider, for the same régime of T , the close
vicinity of the point midway between two resonant peaks,
with an odd number of electrons in the dot. This allows
us to restrict the energy levels to a filled level, with oc-
cupancy nd = d†σdσ, E−

c = e2

2C ≡ −εd below the Fermi
energy and an unfilled level E+

c = e2

2C ≡ U + εd above.
In the limit −εd (n odd dot energy), U + εd (energy of

1st excitation) 	 (Γ0, T ) we resort to the Schrieffer-Wolff
transformation to obtain the Kondo model [1]

HK =
∑

k,k′,µ,ν

(
Jk,k′c†kµ

σµν

2
ck′νS + Vk,k′c†kµck′µ

)
, (4)

where S is the impurity spin of the level, the Kondo cou-
pling Jk,k′ = 2( 1

|εd| + 1
|U+εd| )tktk′ , and the potential scat-

tering Vk,k′ = 1
2 ( 1

|εd| − 1
|U+εd| )tktk′ vanishes at the sym-

metric point U = −2εd. The lead index has disappeared
as only the symmetric combination of leads is coupled to
the level through equation (1) [1]. For FL leads, it has
been shown [1] that within the Kondo régime scattering
through the impurity spin of the dot simply introduces a
phase shift of the conduction electrons. Thus it is possi-
ble to map the strong coupling régime of the Anderson
model to the U = 0 resonant Anderson model. For a con-
stant density of states in the lead (r = 0), the strong
coupling fixed point of the Kondo model corresponds to a
phase shift δ = π/2 so one recovers unitary conductance
as T → 0. Below, we treat two cases arising when r �= 0
using knowledge of the pseudogap Kondo model [5–7].

For p-hs (V = Vk,k′ = 0) when the dot-lead hybridiza-
tion is sufficiently large one can once more perform this
mapping to the pseudogap U = 0 resonant Anderson
model [7]. Hence, provided J = Jk,k′ is greater than a
critical value Jc, as r decreases the conductance at the
point symmetrically placed between Cbps should exhibit
a low temperature rise in conductivity to reach G = GR

at T = 0. The value of Jc can be estimated following the
poor man’s scaling analysis of reference [5] and in our case
we find Jc ≈ 2rD

r+1 | D
E∗ |r (Γ0c ∼ πrEc

4 | D
E∗ |r) for small r. Nu-

merical work in the D = E∗ limit [7,23] shows Jc (Γoc)
diverges at r = 0.5. Nodal qps of d-sc leads (r = 1) should
not support conductance. As a function of the matrix el-
ements governing the hopping between dot and leads a
qcp exists. For J < Jc, the local moment is unscreened
blocking transport through the quantum dot (G = 0). For
J > Jc one enters [5] the Kondo partially screened régime
below the Kondo scale Tχ ∼ E∗(J−Jc

J )
1
r [5] leading to

G = G0 cos2(π
2 r). Close to p-hs (V �= 0 or U �= −2εd),

we can imagine extending the applicability of the above
formalism with the proviso that the potential scattering
term is no longer forbidden. With V �= 0, the strong-
coupling fixed point of p-hs is no longer stable [7]. For
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Fig. 3. (a) Sketch of the conductance for r = 0.2 in a Kondo
valley: (solid) at p-hs U = −2εd (onsets below Tχ); (dashed)
for V �= 0 vanishes below Tχ′ . (b) The maximal height of the
Kondo peak (at U = −2εd) showing the cos2(π

2
r) dependence

and comparison with the 1D case at the one-channel Kondo

fixed point G = 2e2g
h

[25] for: Luttinger liquids g = 1/(r +
1); carbon nanotubes tunneling through the end [9] gend =
1/(4r+1); the bulk [9] gbulk = 1+4r−√

8r + 16r2. (c) The VG

dependence of the crossover energy scales to enter the Kondo
régime if t = 31.6 K, δE ≈ Ec = 1 K and D = 103 K; Tχ:
(solid); Tχ′ : (dashed). The filled region labelled Kondo peak
delineates the boundaries of the r = 0.2 Kondo effect or the
width of the conductance peak in the Kondo régime located in
between the resonant peaks at εd = 0 and εd = −2 K. Note
that, for the parameter choices indicated, Tχ → 0 for r � 0.31,
(inset) a log log plot: Tχ′ vs. width of the Kondo region at low
T for different values of r (a δ-function at T = 0).

0 < r < r∗ = 0.375, below a temperature scale [23]
Tχ′ ∼ | V

E∗ | 1r Tχ one flows [24] to an asymmetric strong cou-
pling fixed point with entropy S = 0 and phase shift [7]
δ = πsgn(−ε) yielding G = 0. A summary of our re-
sults, including the peak width at finite T is presented
in Figure 3; these are compared and contrasted with 1D
results [25] where a one- or two-channel Kondo effect can
occur depending on the range of interactions (and p-hs or
the relevance of the V term [26]).

To summarize, we have considered the idea of a quan-
tum dot sandwiched between FL leads with a DOS (or
equivalently hopping matrix elements) vanishing as a
power law at the Fermi energy. We recapture the low
temperature dependence of the widths of the 1D Cbps
(r = −1+1/g), while their height reaches G = 2e2 cos2( πr

2 )

h
as T → 0. In contrast, Kondo physics drastically changes
from the 1D case, as the phase shift varies continuously
from δ = π

2 to δ = π
4 as the exponent r changes from 0 to

0.5. This is a signature of incomplete spin screening which
coincides with a non-vanishing entropy [6,7] S = 2rln 2

(S(r = 0) = 0: fully screened spin; S(r = 1/2) = ln(2):
free spin). As in 1D [25], p-h asymmetry matters leading to
sharp peaks as a function of VG. Observation of the disap-
pearance of the Kondo signal as a function of the dot-lead
hopping at a critical Kondo coupling gives strong support
for an underlying qcp.
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